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Intfroduction

» \Why return to the Moone
» Stepping stone for deep space missions
» Sciencel

» Resources: fuel
» Rocks -> O, -> LOX




Background — O, Source

» O, Sources:
® [ce in permanently shadowed craters

= Minerals in regolith

» | ynar Minerals Distribution

= Highlands - silicates

» Mare - oxide metals
»FeTiO,: 15 -20 vol %
» TIO,] o< [FeTiO4]

1994 Clementine lunar map
Lucey et al. (1998)




Eagle Engineering, Inc. Study

» Confract with JSC (1988)
» | ynar LOX pilot plant

» 72 mt/month

» ||menite best feedstock
» One big plant > many small

®» | ess mass redundancies

» Pjlot plant stats

» 247 mt [mass]
» |46 kW [power needed]

» H, reduction




Problem Statement

» The Eagle Engineering, Inc. (EEl) report provides @
detailed procedure to harvest LOX from the Moon, but it

Is outdated and could benefit from the modernization of

its hardware as well as a cross-analysis of other potential

extraction reactions.




Scope of Study

» Objective 1: Modernization of facility components
» Power
» \Mass
» Storage

» Objective 2: Compare reactions for optimal output
» H, reduction

» CO reduction
» Carbochlorination




Eagle Engineering Process Schematic — Lite
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Modernization — Power: PV Cells

Top =

» Photovoltaic (PV) Cells

A/R | Contact | A/R

Middle Junction 4
» |46 kW needed GaAs 1.3-1.4eV
131 kW = operations
» |5 kW = charge fuel cell SEE—
» |SS Panels
®38.74mx29.1m PV System Efficiency (%)
» /7 panels, 86 W/m?
» 1368 W/m? (lunar surface) Eagle Engineering 6.3
» Eff. ~ 6.3% Modern Consumer-grade 15
Modern Commercial-grade 23
Multi-junction Cell 44




Modernization — Power: Fuel Cells

High-pressure — FCstack

hydrogen tanks

» 37200 kW-hr capacity — , -
= 9.6 kW needed | , =8 :
= 336 hours (14 days) | aad |
» “Hot-standby” i

Power control unit

» Adjusted Operating Time :‘by — | —
= 114 kW — 9.6 kW

FC boost converter
» ) 9 hours — 34.4 hours

Fuel Cell Op. Time (hr) | Output (kW) | Op. Time @ 9.6 kW (hr)
Eagle Engineering 336 9.6 336
Honda Clarity 2.31 100 24.1
Hyundai Tucson 2.65 100 27.6
Toyota Mirai 2.9 114 34.4




Eagle Engineering Process Schematic — Lite
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Modernization — Mass: PV System

» For 146 kW output
» At least >50% mass savings

/ ®» Assuming linear efficiency vs. mass

PV System Efficiency (%) Mass (kg) kg / kW
Eagle Engineering 6.3 5721 39.2
Modern Consumer-grade 15 2452 16.8
Modern Commercial-grade 23 1635 11.2
Multi-junction Cell 44 817 6




Modernization — Mass: Fuel Cell

» Given 3200 kW-hr capacity

» |0 fuel cells required
» |44.5 kg each

Fuel Cell Eagle Engineering |Totoya Mirai
Output (kW) 9.6 114
Mass (kg) 3285 144.5
Adjusted Operating Time (hr) 336 34.4
Quantity for 3200 kW-hr 1 10
Total Mass (kg) 3285 1445




» Fagle Engineering

» High leak rate

» “Maximum 93.36 kg/day boil-off of LOX™

» Chai et al. (2014)

» Orbital fuel depot

» NMore massive

Modernization — Mass: Storage Tanks

» Extremely low boil-off losses vs. Eagle Engineering

Storage Tank LOX Boil-off (kg/day) | Tank Mass (kg) | Boil-off/Tank Mass
Eagle Engineering 93.4 109.5 0.853
0.017 630 0.000025

Chai et al. (2014)




Modernization — Storage Tanks

» Chai et al. (2014)

» Multi-layer insulation (MLI)

» Active cryogenic cooler

Boil-off Rates
Storage LOX (kg/day) LH, (kg/day)
Eagle Engineering 93.40 0.071
Modern, passive 0.017 0.011
Modern, active 0.008 0.005
Modern, future 0.000 0.000
Power Required (W) LOX (W) LH, (W)
Eagle Engineering 0 0
Modern, passive 0 0
Modern, active 80 10
Modern, future 105 122




Modernization — Summary

» Almost all substantial improvements

» Achieved with equipment available today

Eagle Engineering vs. Modernized Comparison Chart

Power Eagle Engineering Modernized Savings
PV System Many panels at 6.3% eff. |Few panels at higher eff. 8.7% [ 16.7% [ 37.7% eff.
Fuel Cell Few large tanks Multiple small stacks Flexibility, small form factor

Mass Eagle Engineering Modernized Savings
PV System 5721 kg 817 - 2451 kg 3270 - 4904 kg (57% - 86%)
Fuel Cell 3285 kg 1445 kg 1840 kg (56%)
Storage Tanks 109.5 kg 680 kg -570.5 kg (-84%)

Storage Eagle Engineering Modernized (passive) Savings

LOX 93.4 kg/day 0.017 kg/day 93.383 kg/day (99%)
LH2 0.071 kg/day 0.011 kg/day 0.06 kg/day (84%)




Objective 2: Process Comparison

» Fxiraction Reactions
» H, Reduction
» CO Reduction

» Carbochlorination

» Pros and Cons: “What do you wante”
» Product(s)?
» Versatility?
» Complexity?




Process Comparison - H, Reduction

® 1) FeTiO, + H, — H,O + TiO, + Fe
» 2) H,O — H, + 40,

» [000 °C reaction temp

» | hour

Condense and
electrolyze H,0 into H,
and O,

Mine FeTiO3 from Process FeTiOs into React FeTiOs with H;
environment reactor-grade form to liberate H,0

Waste disposal TiO, + Fe storage LOX storage



H, Reduction — Recycling Reactant

®» |[nfegrated into process

H, storage < H,

Condense and
electrolyze H,0 into H,
and O,

React FeTiO3 with H,

to liberate H,0




Process Comparison - CO Reduction

» Similar fo H, Reduction
» | hour, 1000 °C

= 1) FeTiO, + CO — TiO, + Fe + CO
= 2) CO, + 4H, — CH, + 2H,0
= 3) H,O — H, + %0,

H, storage

Mine FeTiO3 from Process FeTiOz into React FeTiO3 with CO React CO, with H, Condense and

. . . electrolyze H,0 into H
environment reactor-grade form to obtain CO, to obtain H,0 \;nd (; z
2

Waste disposal TiO, + Fe storage CH4 storage LOX storage



CO Reduction - Recycling Reactant

» Recycling Reactor: CH,
» CH, — C +2H,

» 1200 °C "

» Recycling Reactor: CO
»C+CO,— 2CO
= 1150 °C

®» Separate reactions

» Separate times

» [Jses iimenite CO,

CO storage H, storage <

React FeTiO3 with CO React CO, with H, (CoelEEss Ee

to obtain CO, to obtain H,0 SlEEEl e L0 T i
and O,
2

0
¥




Process Comparison - Carbochlorination
» Similar to CO Reduction
» 2FeTiO, + 6Cl, + 3C — 2FeCl, + 2TiCl, + 3CO,
= 3CO, + 12H, = 3CH, + 6H,0 —

Cl, storage C storage H, storage

» Same Recycling Setup

: : - - : Cond d
Mine FeTiOs from Process FeTiOs into React FeTiO; with Cl React CO, with H, SRESISE S

electrolyze H,0 into H
environment reactor-grade form and C to obtain CO, to obtain H,0 iand CZ) 2
2

TiCl, + FeCl,

Waste di I CHy st LOX st
aste disposa — 4 storage storage



Processes — Pros and Cons

» Products and Versatility
» By-products desired?

» Fyture changese¢

» Complexity

» Nore is worse

Process Products Versatility Complexity

H, Reduction 3 Low Low
CO Reduction 4 Medium Medium

Carbochlorination 4 Medium _

\\




Processes — Energy Needed

» H, Reduction least energy intfensive

» CO Reduction/Carbochlorination similar

Process H, Reduction CO Reduction Carbochlorination
Reaction 1 FeTiO;+H, > H,0+TiO, +Fe | FeTiO3+CO - CO, +TiO, +Fe | 2FeTiO5 + 6Cl, + 3C - 3CO, + 2FeCl, + 2TiCl,
Reaction 1 Temp 1050 °C 1000 °C 1000 °C
Reaction 2 - CO,+4H, - +CH,+2H,0 3CO, +12H, - 3CH, + 6H,0
Reaction 2 Temp - 1000 °C 1000 °C
Recycle 1 (electrolysis) CH, > C+2H, CH, > C+2H,
Recycle 1 Temp - 1200 °C 1200 °C
Recycle 2 - C+CO, > 2CO C+CO, »> 2CO
- 1150 °C 1150 °C

Recycle 2 Temp




Processes — Moles Reactant vs. Moles Product

» Carbochlorination is best extractor of O,

Reactant| H, Reduction | CO Reduction | Carbochlorination
FeTiO; 2 1 0.666
H, 2 4 4
CcO - 1 -
C - - 1
Cl, - - 2
Product | H, Reduction | CO Reduction | Carbochlorination
Fe 2 1 -
TiO, 2 1 -
TiCl, - - 0.666
FeCl, - - 0.666
0, 1 1 1




|

Processes — By-product Profit
Calculator Lookup Table

Reactant| Molar Mass (kg/mol) | H, Red. Reactant kg/1 kg O, | CO Red. Reactant kg/1 kg O, | Carbochlor. Reactant kg/1 kg O,
FeTiO; 0.152 9.48 4.74 3.16
H, 0.002 0.13 0.25 0.25
CO 0.028 - 0.88 -
C 0.012 - - 0.38
cl, 0.071 - - 4.43
Product | Molar Mass (kg/mol) | H, Red. Product kg/1 kg O, | CO Red. Product kg/1 kg O, | Carbochlor. Product kg/1 kg O,
Fe 0.056 3.49 1.75 -
TiO, 0.080 4.99 2.50 -
TiCl, 0.190 - - 3.95
FeCl, 0.127 - - 2.64

\




Processes — By-product Profit Calculator

Reactant Cost (S/kg) Product Price ($/kg)
cO TiO, Process H, Reduction | CO Reduction | Carbochlorination
cl, Fe Reactant Cost ($/1 kg Oxygen) $0.00 $0.00 $0.00
H, FeCl, Product Price (S/1 kg Oxygen) S0.00 $0.00 S0.00
C TiCl, Profit? S0.00 S0.00 S0.00




Processes — Summary

» Score value
» Red =1, Orange = 2, Green =3

» H, Reduction =9
» CO Reduction =7/
» Carbochlorination =7

Processes H, Reduction |CO Reduction |Carbochlorination
Products 3 4 4
Versatility Low Medium Medium
Complexity Low Medium

Energy Needed Low

limenite Needed

Profit




Project Summary - Totals

» Objective |
» Power eff. increase
= 9% - 38% (143% - 603%)
» Mass reduction
» 3969 - 5603 kg (43% - 61%)
» | OX Boil-off reduction
= 93.329 kg/day (99%)

» Objective 2
» H, reduction =9
» CO reduction =7
» Carbochlorination =7




Conclusion

» Modernization of EEl's design is possible today
» Optimized design

» | owered mass = lowered launch costs

» | ess LOX lost

®» Processes are goal dependent
» Profitability for by-products assumes terrestrial prices

» | unar “premium”




Future Work

» Base Design
» Footprint
» Base Location
» Which mare?¢
» Re-fueling options
» Delivery to LEO®¢
» “|unar gas station”?

B VEXTDEPOT: 3000 LIGHTVEARS P

1994 Clementine lunar map
Lucey et al. (1998)
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Questions?
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Modernization: CO Reduction
Additional Mass

» Additional 224 kg to H, Reduction process

» 1365 kg for modern components

Name Eagle Engineering Mass (kg) | Modern Mass (kg)

Cyclone Separator (2) 2 2
Methane Storage Tank 109.5 680

CO Storage Tank 109.5 680

CO Heater 0.1 0.1

CO Blower 3 3
Fischer-Tropsch Reactor 0.1 0.1

Total Added 224.2 1365.2




Modernization: Carbochlorination Mass
and Power

» Additional 333.7 kg to H, Reduction process
» One tfank extra to CO Reduction process

» [475 kg for modern components

Name Eagle Engineering Mass (kg) | Modern Mass (kg)

Cyclone Separator (2) 2 2
Methane Storage Tank 109.5 680

Cl Storage Tank 109.5 680

Cl Heater 0.1 0.1

Cl Blower 3 3
Fischer-Tropsch Reactor 0.1 0.1

C Storage Tank 109.5 109.5

Total Added 333.7 1474.7




Potential Markets

LEO re-fuelling
®» Enable missions otherwise too difficult/expensive
Satellite servicing
» Extend lifetime of satellites
» Expand satellite industry
Inter-lunar base
» Provide O, for base
Intra-lunar base

» Fuel alocal economy
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Discussion: Comparing Processes

Carbotek Current Mining Beneficaion Process Power Total
Mass (kg) r 3363 3878 4816.1 9006 21063.1
Nominal Power (kW) | 4.6 33.75 62.47 0 100.68
Volume (m”3) 75.589 44.813 19.421 115.2 255.023
Carbotek Updated Mining Beneficaion Process Power Total
Mass (kg) r 3363 3878 4816.1 4453 16510.1
Nominal Power (kW) i 4.46 33.75 62.47 F 0 100.68
Volume (m”3) 75.589 44.813 19.421 102 241.823
CO Reduction Mining Beneficaion Process Power Total
Mass (kg) r 3363 3878 5040.3 4453 16734.3
Nominal Power (kW) § 4.46 33.75 62.56 0 100.77
Volume (m”3) 75.589 44.813 29.631 102 252.033
Mining Beneficaion Process Power Total
Mass (kg) r 3363 3878 5149.8 4453 16843.8
Nominal Power (kW) [ 4.46 33.75 62.56 0 100.77
Volume (m”3) 75.589 44.813 34.731 102 257.133




b Eagle Engineering Process Schematic
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CO Reduction Process Schematic
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Carbochlorination Process Schematic
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